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Abstract

There is a high co-occurrence of risky substance use among adults with traumatic brain injury 

(TBI), although it is unknown if the neurologic sequelae of TBI can promote this behavior. We 

propose that to conclude that TBI can cause risky substance use, it must be determined that TBI 

precedes risky substance use, that confounders with the potential to increase the likelihood of both 

TBI and risky substance use must be ruled out, and that there must be a plausible mechanism 

of action. In this review, we address these factors by providing an overview of key clinical and 

preclinical studies and list plausible mechanisms by which TBI could increase risky substance use. 

Human and animal studies have identified an association between TBI and risky substance use, 

although the strength of this association varies. Factors that may limit detection of this relationship 

include differential variability due to substance, sex, age of injury, and confounders that may 

influence the likelihood of both TBI and risky substance use. We propose possible mechanisms by 

which TBI could increase substance use that include damage-associated neuroplasticity, chronic 

changes in neuroimmune signaling, and TBI-associated alterations in brain networks.

Given the high co-occurrence of risky substance use and/or substance use disorders (SUDs) 

among adults with traumatic brain injury (TBI) (1–3), investigators have asked whether 

TBI causes SUD and/or SUD causes TBI. Several reviews have concluded that at-risk 

substance use is more likely to cause TBI than TBI is to cause SUD (4–6), while others 

have concluded that there is insufficient evidence to make definitive conclusions about the 

directionality of causal influences (1,2). There is little doubt that engaging in risky substance 

use can cause TBI. Intoxication, whether by alcohol, cannabis, or other drugs, increases the 

likelihood of injury, which can include a TBI (7). At least 2 studies have found that among 

those treated for an injury in an emergency department, the greater the alcohol intoxication, 

the more likely the injury included a TBI (8,9).
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The more nuanced question is whether TBI causes risky substance use. Some authors have 

cited the tendency for TBI cohorts to reduce use immediately after injury, especially if the 

injury is associated with use (10–12), as evidence that TBI does not cause risky substance 

use. However, several studies have shown that most people who used alcohol before TBI 

eventually return to pre-injury patterns of use unless a medical condition precludes use 

(11–13). The logic of this argument is further undermined by what Corrigan et al. have 

called the chicken or the egg problem (14). The difficulty in examining a causal relationship 

between TBI and SUD is highly affected by the injury used to anchor the question. Previous 

investigators who concluded that SUD causes TBI but TBI does not cause SUD anchored 

their analyses in studies that used samples of patients in adult trauma or acute rehabilitation 

units. A large percentage of participants in these samples had histories of at-risk substance 

use or a diagnosable SUD that preceded their injury. However, these studies did not 

determine whether the TBI that led to their inclusion in the cohort was their first TBI, which 

ignores whether one or more TBIs earlier in life may have influenced their development of 

risky use behaviors. Several studies support the conclusion that childhood TBI could lead to 

the development of adolescent or adult at-risk substance use (15–19); thus, the conclusion 

that causality is only in the direction of substance use causing TBI appears flawed.

In this review, we will explore this more nuanced direction of causality—can TBI cause 

the development of at-risk substance use and/or SUD? To allow a focused consideration of 

this question, we will not address whether a TBI can make preexisting substance use worse. 

To confidently conclude that TBI is the cause for the development of at-risk substance use 

and/or SUD would require establishment of several relationships among these conditions. 

First, most obviously, the TBI would need to precede the development of the problematic 

substance use. Second, the relationship between TBI and problematic substance use could 

not be due to a confounder that precedes both and causes each. Confounders that have 

been hypothesized include childhood exposures (e.g., parental attributes, parenting, adverse 

childhood experiences, socioeconomic status, community risk factors) and a behavioral 

phenotype for risk taking (e.g., a personality trait that could lead to both TBI and 

problematic substance use). Finally, and perhaps most challenging, to establish causality, 

there would need to be a mechanism of action that provides a plausible explanation for how 

TBI could do so. In the following sections, we will explore first human, then preclinical 

evidence for the conditions required to conclude causality (summarized in Tables 1 and 

2, respectively). Evidence from these two sources of findings is uneven, and surprisingly, 

despite the greater control afforded via preclinical studies, unequivocal evidence to inform 

this question is not easily derived.

HUMAN STUDIES CONTRIBUTING TO CAUSALITY

Human studies that allow scrutiny of a causal relationship between TBI and problematic 

substance use have been limited to examining the temporal onset and presence of 

confounders. These studies have used three methods: 1) eliciting lifetime exposure in TBI 

cohorts; 2) population surveys examining the association of the two conditions; and 3) birth 

cohorts examining both onset and association. TBI cohorts in which lifetime exposure was 

studied have included the TBI model systems (20), Transforming Research and Clinical 

Knowledge in Traumatic Brain Injury (TRACK-TBI) (21), and Army Study to Assess Risk 
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and Resilience in Servicemembers (STARRS) 22). Lifetime TBI identification has been 

done with standardized methods of self-report, and substance use is typically self-reported 

past-month behavior. Population surveys have used a variety of methods for detecting both 

TBI and substance use, with the former varying from single-item elicitation [i.e., New 

Haven, Connecticut (23); Southeast Australia (24); Ontario, Canada (25,26)] to protocols 

based on standardized methods of retrospective self-report [i.e., Colorado (27), Ohio (28,29), 

North Carolina (30)]. Only a small number of birth cohort studies have allowed examination 

of the onset and development of TBI and at-risk substance use, including those conducted 

in Christchurch, New Zealand (25); Northern Finland (31–33); and Avon, United Kingdom 

(34). TBI identification is typically based on medical records; substance use has been both 

medically documented or self-reported recent behavior. Each of these methodologies has 

strengths and weaknesses for examining the temporal onset and presence of confounders, as 

shown in Box S1.

Temporal Onset

Several studies support a relationship between childhood TBI and later adolescent or adult 

at-risk substance use (20–22). Studies in TBI cohorts that capture lifetime history of TBI 

have found that earlier life injuries are more common among those with alcohol use 

problems, although temporal ordering is not possible. Studies in 2 U.S. states did not find 

that children injured earlier in life (before age 15 and before age 18 years) than persons 

injured after those ages were not more likely to engage in risky alcohol use as adults (28,30). 

In contrast, Corrigan et al. found that adults who had experienced a mild TBI with loss of 

consciousness before age 20 were more likely to engage in binge drinking than those who 

had a first mild TBI with loss of consciousness at an older age (29). This risk was largely 

due to a first TBI being incurred both at 10 to 14 and 15 to 19 years. These two groups were 

equally likely to engage in adult binge drinking. Indeed, had either 15 or 18 years been used 

as the cut point for age at first TBI, as was done in the two other state population studies, 

the difference would not have been significant. While any adolescent onset of TBI seems to 

increase the likelihood of problem alcohol use in adulthood, unfortunately, it is not definitive 

that TBI preceded the problematic use.

The Christchurch birth cohort study found that children hospitalized with a mild TBI before 

the age of 6 were more likely to develop alcohol problems in adolescence than children 

with no TBI or those with a mild TBI that did not require hospitalization (35). The birth 

cohort study in Avon found that TBIs occurring before age 17 were associated with problem 

alcohol consumption at age 17 (34). The Northern Finland birth cohort study did not find 

a difference in heavy drinking for those with or without childhood TBI; however, those 

children who incurred a TBI before age 12 initiated heavy drinking 6 years earlier than 

those with a first TBI at 12 to 15 years old (33). Note that the Christchurch results would 

appear to un-equivocally support that TBI preceded problematic substance use, but the Avon 

cohort is more ambiguous due to the possibility that alcohol consumption could begin in 

early adolescence.
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Potential Confounders

Studies using the Northern Finland birth cohort reported multiple risk factors associated 

with incurring a TBI, including that if parents misused alcohol, there was a twofold greater 

chance of childhood TBI (31), and that a first TBI after age 12 that occurred while drinking 

alcohol resulted in a fourfold greater risk of repeat TBI by age 34 (32). Findings noted 

above for the Christchurch and Avon birth cohort studies were significant after controlling 

for multiple demographic, parental, and developmental characteristics (34,35). The Avon 

birth cohort studies also compared those with a TBI to an orthopedic injury control 

group intended to represent a behavioral phenotype for risk taking. While the association 

with problem alcohol use was significantly higher in the orthopedic injury group than 

the uninjured comparison group, the TBI group was still significantly greater than the 

orthopedic control group. Their findings were specific to alcohol because the TBI and 

orthopedic injury groups did not differ significantly in their likelihood of smoking either 

cannabis or nicotine.

These few studies may lend support for the effect of TBI not being due to influences 

such as parental attributes, parenting, or socioeconomic status. Influences from adverse 

childhood experiences or community characteristics have not been explored. The single 

study that investigated a risk-taking behavioral phenotype still found an additional effect of 

TBI on drinking at age 17 (34). This finding is perhaps strengthened by risk taking having 

equivalent risk for the likelihood of cannabis and tobacco use. Still, it is a single study.

In summary, from human studies, a significant association is frequently found between TBI 

and at-risk substance use and/or SUD. These studies have been largely limited to alcohol. 

The strength of association observed may be small, thus contributing to variation in findings. 

The ability to detect the relationship may be masked by variations in manifestation of the 

influence of TBI, for instance, age at injury or context of the injury (e.g., whether it occurs 

during a period of stress). The utility of the human literature for establishing a causal 

relationship between TBI and risky substance use is specifically limited by uncertainty 

about temporal onset during adolescence. Without specificity about the age at injury and 

the age at initiation and/or risky use of substances, temporality will be difficult to ascertain. 

Finally, the study of confounders is limited by the ability to operationalize constructs such 

as adverse childhood experiences or behavioral phenotypes in population-based cohorts. 

However, studies that have controlled for characteristics of parents, parenting, and the 

home environment seem to consistently suggest that these factors are unlikely sources of 

confound.

PRECLINICAL STUDIES CONTRIBUTING TO CAUSALITY

Temporal Onset

An advantage of preclinical research is that temporal ordering of TBI and exposure to 

drugs of abuse is controlled. To date, most preclinical research has focused on modeling the 

question of whether TBI can increase risky drug use (see Box S2 for commonly used models 

of drug reward/reinforcement; see Table 2 for a summary of experimental findings).
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Early studies on the effects of TBI on subsequent drug use focused on alcohol. In mice, 

experimental TBI led to reduced alcohol intake within the first 2 weeks following injury 

(36,37). In rats, blast TBI resulted in similar alcohol intake during a 7-week course of 

two-bottle choice but divergent responses on a final 1-hour session (38). Similar results were 

found in mice after repeated blast TBI: the proportion of daily alcohol consumed in the first 

2 hours was higher in injured mice (39). Weil and colleagues demonstrated that adolescent 

mice had elevated alcohol drinking 1 week after TBI (40). A subsequent study found that 

females but not males had higher alcohol consumption and conditioned place preference 

(CPP) (41).

Adolescent, but not adult, TBI resulted in elevated cocaine CPP in male mice (42–44), but 

female mice showed differential effects based on estrus status. Mice in met- or diestrus at 

the time of injury had significantly elevated cocaine CPP, while those in proestrus or estrus 

had no change (45). Moderate to severe frontal TBI increased cocaine self-administration 

(46), while mild TBI found no difference in self-administration, extinction, or cue- or 

cocaine-primed induced reinstatement (47). Repeated blast resulted in similar levels of 

oxycodone self-administration, but subsequent drug seeking was elevated in the injured 

group (48). Thus, there are several examples of increased susceptibility for substance use in 

rodent models, but outcomes differ based on factors such as injury mechanism and severity, 

age at the time of injury, the drug studied, and time after injury.

Potential Confounders

Although preclinical studies can be designed to reduce the impact of confounding variables, 

these may not always be considered. Unknown individual differences that are present prior 

to experiment onset could independently contribute to both TBI recovery and addiction-

related outcomes. Many studies use outbred rats [e.g., (46,48)] or mice [e.g., (40)], and 

this genetic variability may explain individual differences in drug reward/reinforcement 

following TBI (38,46). Similarly, individual differences in traits such as impulsivity exist 

in experimental animals and, similar to humans, can explain differences in addiction-

related behaviors (49–51). Consideration of these differences and testing models of human 

confounders [e.g., models of early-life adversity (52,53)] will be important to better 

understand human variability in the relationship between TBI and risky substance use.

Plausible Mechanisms of Action

TBI induces myriad neurochemical changes, the nature of which is affected by factors 

including injury mechanism and severity, genetics, age, and sex. This section will focus 

on biological effects of TBI that are linked with neuroplasticity and describe plausible 

mechanisms by which these effects could increase addiction liability (summarized in Table 

3). The reader is referred to (54–57) for more comprehensive reviews on the neurochemical 

sequelae of TBI. For simplicity, we will discuss these mechanisms in 2 broad timeframes: 

acute (within the first few days of injury) and chronic (after the first few days). The acute 

stage will be discussed in terms of the initial effects of injury that can set the stage for 

enduring neuroplasticity relevant to addiction liability, and the chronic stage will present 

evidence that persistent sequelae could influence physiological responses to drugs of abuse 

and addiction liability.
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Acute Effects: Damage-Associated Molecular Pattern Mediated Increases in 
Ca2+-Permeable AMPA Receptors.—Primary mechanisms of TBI involve impact-

associated forces, which stretch tissue and shear axons (54). At impact, mechanical 

deformation and/or mechanoporation leads to ion flux that ultimately leads to profound 

membrane depolarization of neurons (54,58,59). This depolarization promotes neuronal 

excitotoxicity and necrosis, which releases damage-associated molecular patterns (DAMPs) 

(59–61). DAMPs promote activation of astrocytes and microglia (collectively referred to 

as gliosis), resulting in release of cytokines and chemokines (54,61). DAMP-associated 

TLR4 (toll-like receptor 4) signaling triggers robust synaptic plasticity, increasing synaptic 

levels of Ca2+-permeable AMPA receptors (CP-AMPARs) and increasing Ca2+ conductance 

through NMDA receptors (62). Both experimental TBI and injury to cultured neurons were 

found to elevate synaptic CP-AMPARs (63,64). In rodents, drugs of abuse also increase 

synaptic CP-AMPARs in areas of the brain involved in drug seeking, including the ventral 

tegmental area (VTA), nucleus accumbens, and prefrontal cortex (PFC), and these effects 

often persist for weeks or months (65,66). Elevated CP-AMPAR expression is observed 

in the VTA after exposure to morphine, cocaine, ethanol, and cannabis (65). CP-AMPARs 

are also increased in the nucleus accumbens after cocaine withdrawal, and reversal of this 

phenomenon is sufficient to reduce drug seeking (67,68). Thus, the DAMP→TLR4→CP-

AMPAR cascade is one plausible mechanism by which TBI could promote subsequent 

substance use.

Acute Effects: Cytokine Regulation of Neuronal Transmission.—Glial and 

peripheral cytokines can influence synaptic plasticity and have been linked to addiction 

liability. Interleukin 1β (IL-1β) modulates neuronal ion flux via several mechanisms (69,70), 

and chronic IL-6 downregulates metabotropic glutamate 2/3 receptors (mGluR2/3) (71). 

Reduction of mGluR2/3 function in mesocorticolimbic brain regions is also observed 

following exposure to nicotine, cocaine, or alcohol, and treatment with mGluR2/3 agonists 

or positive modulators reduces the reinforcing effects and seeking of drugs (72–76). Tumor 

necrosis factor α strongly increases the balance of excitatory/inhibitory transmission by 

increasing cell surface CP-AMPARs and internalizing GABAA (gamma-aminobutyric acid 

A) receptors (77). Although cytokine responses occur acutely following injury, there is 

extensive evidence for prolonged elevations in excitatory neurotransmission following 

immune challenge, including susceptibility to seizures (78–80). Persistent increases in 

neuronal excitability and seizure susceptibility are also common following TBI (81,82). 

Thus, IL-6–associated reduction of mGluR2/3 and tumor necrosis factor α–associated 

elevation of CP-AMPARs are plausible mechanisms by which TBI-associated cytokine 

signaling could promote subsequent substance use.

Chronic Effects.—Postmortem and neuroimaging studies demonstrate gliosis that persists 

months or years after injury (55,57), and elevated levels of IL-1β, major histocompatibility 

complex class II, and IL-6 have been reported several months after experimental TBI 

(55,57). Drug use has been linked to chronic gliosis. Alcohol (83), cocaine (84,85), 

methamphetamine (86), and opioids (87,88) engage innate immune signaling, and alcohol 

and methamphetamine can also induce gliosis via other mechanisms, such as the generation 

of reactive oxygen species (89,90). Methamphetamine users had elevated binding of the 
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microglial activation marker (R)-[11C]-PK11195, which was inversely proportional to 

abstinence duration (91). Similarly, upregulation of immune-related genes is a consistent 

finding in postmortem tissue from chronic alcohol users (92), and gliosis is prominent in 

animal studies of alcohol and opioid self-administration (92–94).

Chronic Effects: Microglial Priming—Implications for Drug Exposure, Craving, 
and Relapse.—TBI can lead to microglial priming, where the cells are hyperresponsive 

to subsequent immune challenge, even at distal time points (95–97). It is plausible that 

TBI-associated priming could also affect immune responses to drugs of abuse. Morphine 

and other opioids prolong recovery from nerve injury (98,99), and this has been proposed 

to be due to injury-induced priming of spinal microglia (100). Neuroimmune activation 

has previously been proposed to create the biology of addiction (101). In the context of 

TBI, injury-associated priming may contribute to addiction liability by altering biological 

responses to substances and triggers of drug craving: re-exposure to the drug, stress, and 

drug-associated cues (102–105).

Prenatal immune activation increased drug-primed reinstatement to methamphetamine 

seeking and CPP for amphetamine (106,107), and adult immune activation increased alcohol 

drinking (108,109). These data suggest that immune activation primed the response to these 

substances of abuse in a manner consistent with greater risk of risky substance use. In 

a model of comorbid TBI and cocaine use, cocaine intake was positively correlated with 

neuroinflammatory markers in the frontal cortex (46). Drug exposure itself can also prime 

neuroimmune responses. A history of cocaine primes the cocaine-induced increase in IL-1β, 

nuclear factor-κB, and CD11b messenger RNA in the VTA, and blockade of IL-1 receptors 

in the VTA suppresses cocaine-primed reinstatement of drug seeking (110). Similarly, rats 

exposed to morphine in adolescence had an exaggerated immune response to morphine-

elevated morphine CPP in adulthood (111). The glial modulator ibudilast given during 

adolescent morphine exposure blocked the later increase in morphine CPP, suggesting that 

gliosis is a critical mediator of the effect (111). Supporting the notion that a TBI-primed 

response to drug can influence subsequent drug seeking, the steroidal anti-inflammatory 

drug dexamethasone reduced the TBI-associated elevation in cocaine CPP without affecting 

CPP in noninjured animals (43). Similarly, the glial modulator minocycline reduced TBI-

associated increase in voluntary alcohol consumption but had no effect in uninjured animals 

(40). Complementing these studies that demonstrate the necessity of neuroimmune signaling 

for drug seeking, intra-VTA injection of the TLR4 agonist lipopolysaccharide was found to 

be sufficient to reinstate cocaine seeking (110).

Stress is the most-reported trigger of drug craving for several drugs of abuse (112). Stress 

triggers a neuroimmune response and has been proposed to act as a potential trigger for 

microglial priming (113,114). In mice, early-life stress increased central immune responses 

to cocaine (115), suggesting that stress-associated microglial priming is relevant to the 

immunologic response to drugs of abuse. Preclinical studies support the notion that stress-

induced immune responses are important in drug seeking and craving: ibudilast blocked 

stress-induced reinstatement of methamphetamine seeking (116).
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Exposure to drug cues (e.g., places and things associated with substance use) is also a 

powerful trigger of drug craving (117), and there is evidence of conditioned immunologic 

effects of drug-associated cues. Exposure to cocaine-associated cues elevated plasma tumor 

necrosis factor α (118), and heroin seeking evoked by exposure to the drug environment was 

suppressed by the non-opioid TLR4 antagonist (+)-naltrexone (119).

Chronic Effects: Changes in Function of Brain Networks.—Preclinical studies 

have identified TBI-associated increased network excitability in the cortex that emerges over 

time, and increased excitatory and decreased inhibitory synaptic inputs have been identified 

as putative mechanisms of increased excitability of pyramidal neurons (120–122). A rodent 

model of comorbid TBI and oxycodone abuse identified interactive effects of TBI and drug 

exposure on increasing widespread connectivity (123), a phenomenon associated with worse 

TBI outcomes (124,125) and abstinence from prior heroin use (126). The PFC is a region 

that is highly vulnerable to injury in TBI (127), and the same study found that structural and 

functional outcomes in the PFC correlated with drug seeking (123).

DISCUSSION

The relationship between TBI and risky substance use is difficult to study, and there is 

evidence for each to increase the incidence of the other (Figure 1). We have summarized 

human and animal studies that reflect on the question, does TBI cause risky substance use or 

SUD? However, there is not sufficient evidence to definitively conclude that TBI can cause 

such use. In general, preclinical studies outnumber human investigations. Both human and 

animal studies have identified an association between TBI and risky substance use, although 

the strength of this association varies. This variability may imply a weak signal or may be 

due to methodological limitations.

A weak signal also may be due to specific characteristics that modify the presence or 

strength of relationship. For instance, the relationship between TBI and substance use may 

vary by the substance studied. Human and animal studies have been almost exclusively 

about alcohol, although recent studies include other substances. Particularly pertinent 

may be the sex of the organism, as well as the developmental stage when injury and/or 

substances are introduced. There are both human and animal studies that suggest that TBI 

in adolescence shows a greater association to substance use proclivity. It should be noted 

that prior substance use itself may alter the ability of TBI to increase subsequent risky drug 

use. A plethora of human studies indicate that pre-injury misuse of substances increases the 

likelihood of substance misuse after. Similarly, male (but not female) rats with a history of 

alcohol drinking were found to increase intake following injury (128–130).

Ruling out confounding effects has been more difficult. Human studies controlling for 

parental and household factors suggest that these factors may not be a source of confound. A 

human population study using uninjured sibling control subjects to specifically address risky 

substance use would be a useful addition to these studies. It has been more difficult to rule 

out personality traits that may be sources of confound. Risk taking, conduct disorders, and 

childhood traumatization have all been posited. While animal studies could be designed to 
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test such factors, we are not aware of any that have examined these factors in relationship to 

the effects of TBI on drug reward or seeking.

Finally, there are several plausible mechanisms of action for TBI to cause a predisposition 

for risky substance use. Acute and chronic effects of TBI can result in increased CP-

AMPARs and decreased mGluR2/3 expression, hallmarks of prior drug exposure. Emerging 

evidence suggests that microglial priming is a strong candidate for TBI to alter responses 

to substances in a way that promotes future use. Although research on the immunologic 

interactions between TBI and drug use is still in its infancy, the therapeutic potential of 

neuroimmune modulation for the treatment of risky substance use (independent of brain 

injury) is under investigation (131,132). Another plausible mechanism is by altering the 

function of brain networks, especially those involving the PFC. The PFC is particularly 

vulnerable to TBI, and clinical and preclinical studies identify it as a key node in drug 

craving and seeking (133–135).

The question of whether TBI can cause risky substance use is important for human health: 

knowledge of prior TBI may be used to guide personalized substance use treatment (136), 

and there is evidence that prior TBI may change the therapeutic approach for SUD treatment 

in individuals with comorbid TBI [e.g., dexamethasone reduced cocaine CPP only in TBI 

animals (43)]. To the extent that childhood TBI may predispose to adult risky substance 

use, secondary prevention to reduce the likelihood of that outcome could become a target 

for future research, not unlike adverse childhood experience (137). Future research would 

benefit from population studies specifically designed to address this question, as well as 

preclinical studies to test potential therapeutics for substance use in animals with and 

without brain injuries.
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Figure 1. 
Theoretical framework of the relationship between TBI and substance use. CP-AMPARs, 

Ca2+-permeable AMPA receptors; mGluR2/3, metabotropic glutamate 2/3 receptors; TBI, 

traumatic brain injury.
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